
Managing Appliance Launches in Infrastructure Clouds
John Bresnahan
Mathematics and CS

Division
Argonne National Laboratory

bresnahan@mcs.anl.gov

Tim Freeman
Computation Institute
University of Chicago

freeman@mcs.anl.gov

David LaBissoniere
Computation Institute
University of Chicago

labisso@uchicago.edu

Kate Keahey
Mathematics and CS

Division
Argonne National Laboratory

Computation Institute
University of Chicago

keahey@mcs.anl.gov

ABSTRACT

Infrastructure cloud computing introduces a significant paradigm

shift that has the potential to revolutionize how scientific

computing is done. However, while it is actively adopted by a

number of scientific communities, it is still lacking a well-

developed and mature ecosystem that will allow the scientific

community to better leverage the capabilities it offers. This paper

introduces a specific addition to the infrastructure cloud

ecosystem: the cloudinit.d program, a tool for launching,

configuring, monitoring, and repairing a set of interdependent

virtual machines in an Infrastructure-as-a-Service (IaaS) cloud or

over a set of IaaS clouds. The cloudinit.d program was developed

in the context of the Ocean Observatory Initiative (OOI) project to

help it launch and maintain complex virtual platforms provisioned

on-demand on top of infrastructure clouds. Like the UNIX init.d

program, cloudinit.d can launch specified groups of services, and

the VMs in which they run, at different run levels representing

dependencies of the launched VMs. Once launched, cloudinit.d

monitors the health of each running service to ensure that the

overall application is operating properly. If a problem is detected

in a service cloudinit.d will restart only that service, and any other

service that failed which depended upon it.

General Terms

Management, Design, Experimentation.

Keywords

Cloud computing, Infrastructure-as-a-Service, Platform-as-a-

Service, Nimbus.

1. INTRODUCTION
Infrastructure-as-a-service (IaaS) cloud computing [1]

(sometimes also called “infrastructure cloud computing”) has

recently emerged as a promising outsourcing paradigm: it has

been widely embraced commercially and is also beginning to

make inroads in scientific communities. Infrastructure clouds

allow users to exercise control over remote resources by

introducing a virtualization layer that ensures isolation from the

provider’s infrastructure and thus a separation between provider’s

hardware and the user’s environment. This feature proves

particularly attractive to scientific communities where control

over the environment is critical [2]. Furthermore, by providing

on-demand access, cloud computing becomes an attractive

solution to applications that are deadline-driven (e.g. experimental

applications) or require urgent computing [3] capabilities.

Although many scientific projects are actively taking

advantage of cloud computing, the development of its ecosystem

is still in infancy. Tools enabling platform independent computing

[4, 5], contextualization [6], elastic computing [7], or offering

other functionality providing easy access to cloud facilities to the

end user are still being developed. One particular need that

emerged in this context is a tool enabling a controlled and

repeatable launch and management of a set of virtual machines

working in concert with each other to achieve a single goal. This

task is often challenging as little can be assumed about the

network locations of these virtual machines (their IP addresses are

dynamically provisioned), they are frequently interdependent on

each other, and their deployment can be spread across many

different clouds providers, potentially supporting different

interfaces. Specifically, the following questions arise: how can we

orchestrate large-scale, multi-cloud, and multi-VM application

launches? How can we organize, manage, and coordinate the

bootstrap process of these complex cloud applications in a

repeatable way? Once these applications are running how can we

ensure that they continue to work and can we recover from

failures without having to waste valuable time and potential data

by completely restarting them?

In this paper, we introduce cloudinit.d, a tool for launching,

configuring, monitoring, and repairing a set of interdependent

virtual machines in an IaaS cloud or over a set of IaaS clouds. A

single launch can consist of many VMs and can span multiple

IaaS providers, including offerings from commercial and

academic space like the many clouds offered by the FutureGrid

project [14]. Like the UNIX, init.d program, cloudinit.d can

launch specified groups of VMs at different run levels

representing dependencies of the launched VMs. The launch is

accomplished based on a well-defined launch plan. The launch

plan is defined in a set of easy to understand text based ini

formatted files that can be kept under version control. Because

the launch process is repeatable, cloud applications can be

developed in a structured and iterative way. Once launched,

cloudinit.d monitors the health of each running service and the

virtual machines in which they run. If a problem is detected in a

service, cloudinit.d will restart only that service (and potentially

it’s hosting VM), and the dependencies of that service which also

failed. Cloudinit.d was developed in the context of the Ocean

Observatory Initiative project [8] to coordinate and repair

launches of virtual machines of the common execution

infrastructure of this project.

This paper is structured as follows. In Section 2 we define

the requirements and design principles guiding the development

of cloudinit.d. In Section 3 we describe its architecture and

implementation. In Section 4 we present an application example

and review the design features based on this example. In Section 5

we discuss related efforts. We conclude in Section 6.

2. REQUIREMENTS AND DESIGN

PRINCIPLES
The guiding consideration of cloudinit.d development was to

develop the simplest tool that could meet the following set of

goals:

 The need to provide repeatable, one-click, deployment

of sets of VMs. To achieve consistent behavior of

systems, it is important to execute VM launches based

on a launch plan that can be created once and executed

many times in exactly the same way. The execution of

this requirement is of course limited by the degree of

repeatability provided by IaaS providers: in many cases

it is impossible to repeat individual deployment actions

(e.g., a deployment of an instance on the Amazon Web

Services (AWS) provider [9] may result in many

different instantiations [10]).

 Addressing a federated cloud deployment scenario. The

cloudinit.d tool must be IaaS-agnostic so that it can be

deployed on any IaaS cloud. To achieve portability and

flexibility it is important to not only work with multiple

providers but to launch different VMs on different

clouds with a single launch plan. This can be achieved

via the use of adapters, such as libcloud [5] or

deltacloud [4] that provide a bridge to many IaaS cloud

providers and services or by leveraging the increasing

availability of standards such as the specification

recently released by Open Grid Forum’s Open Cloud

Computing Interface (OCCI) working [11].

 Coordination of interdependent launches. The VMs

within one launch can be interdependent in that

information required for the deployment of one can be

provided as a result of the deployment of another. For

example, a VM may need to know the hostname of a

database server to complete its launch sequence. On the

other hand, VMs can also be independent and in this

case can be deployed concurrently, without the need for

coordination. Since it is important to accommodate both

the interdependence and the optimization of concurrent

launch of independent VMs, we divided the launch into

run levels such that each level can define and resolve

attributes to values that can be used by VMs launched

in downstream run levels.

 Testing and Reasoning about the health of the system.

To ensure repeatability, deal with complex launches and

be able to reason about a complex system, a user needs

to be able to make and verify assertions about vital

properties of the system at any given time. Those

assertions need to be both generic (e.g., “is the VM

responding”?) and user-defined (e.g., testing an

application-specific property of a system). For this

reason it is important that user-defined launch tests

embody assertions about the system. cloudinit.d should

provide mechanisms that validate the correctness of a

launch via user-defined tests run after the VMs have

been deployed. To ensure meeting a wide range of

useful tests they should be executed inside the VMs

(e.g., based on ssh into the VM) rather then rely on

external information only.

 Ongoing monitoring of a launch. To closely monitor the

health of the system it is essential that the vital

assertions about the system can be reevaluated at any

time. Therefore, if such assertions are embedded in the

launch tests, those tests need to be able to be rerun not

just at launch, but at any time by an action triggered

automatically or manually by the user (i.e., launch

operator). It should be possible to store the results of

monitoring tests in a database for launch analysis and

recreation.

 Policy-driven repair of a launch. If any of the assertions

about the system fail, it should be possible to repair the

launch components by applying a repair action defined

by a policy. For example, a failure can lead to a number

of repeats of a launch action or abandonment of a

launch component or even the whole launch if a

component is deemed to be irreparable.

3. Architecture and Implementation

3.1 Launch Plans
Cloudinit.d arranges an application into three basic

constructs: (1) service, (2) run level, (3) launch plan. These

components are described below:

Figure 1: Launch plan example shows relationships between

components: the first run-level contains all the services

without dependencies as well as services that run-level 2

depends on; run-level 3 depends on run-level 2

 A service can be thought of as a single, configured VM.

However, this is a very limiting definition. Many

services can be configured to run in a single VM, or on

an existing host that does not have to be a virtual

machine at all. A service is an entity confined to a single

machine which is responsible for a well defined task. In

spite of this fact, in most of our examples we will merge

the understanding of a single VM and a cloudinit.d

service. Some example services are an HTTP server, a

node in a Cassandra [12] pool, or a node in a RabbitMQ

[13] message queue.

 A run level is a collection of services with no

dependencies on each other. All services in a run level

are launched at the same time. That run level launch is

considered complete when all of the services in it have

successfully started. Services in a run level can be run

on one single cloud or across many different clouds.

cloudinit.d makes no assumptions about locality. Any

service in a run level can depend upon any service from

a previous run level. For example, run level one forms a

mongo DB data store cluster. A web application in run

level 2 can depend on that mongo DB cluster, meaning,

it can acquire all of the information needed to connect

to it dynamically at boot time.

 A launch is an ordered set of run levels. To make a

launch plan first all of the services are defined, then

those services are arranged into run levels, and finally

the run levels are put in a specific order. This forms a

complete cloud (or inter-cloud) application.

Figure 1 shows how all of these components interact with

each other. The arrows show the dependencies of one service on

another. When a service needs information from another it

depends upon it and thus must be in a higher run level. It can

request dynamic information about another service at boot time,

or repair time. This powerful feature allows the location of any

given service to be entirely dynamic.

3.2 Services
There are two things that determine how a service behaves

and how cloudinit.d interacts with it. Both of these are defined by

the author of the launch plan (and thus the author of the service).

The first is the base VM image (or running host). The software

installed on that system and the software which is run

automatically upon boot provides a baseline for the capabilities of

the service. The second is the set of configuration scripts

described below:

 The bootpgm is a program that is copied to a distinct

location inside of the services host and is run once to

setup the service. Often times it will download and

install software, typically using tools like apt-get[15] or

yum[16], and then configure that software for use.

Tools like chef-solo[17] can be used by this script as

well. The purpose of this program is to setup the host

server with all needed software and start that software

using any tools convenient to the user.

 The readypgm is similarly copied into the services host

and run via ssh. This program’s purpose is to check the

status and health of the service. It can be, and typically

is, run many times. As an example, if the service's goal

was to serve HTTP, the readypgm would connect to

localhost:80, download a known web page and check its

content. If all is well the readypgm returns 0 and the

service is reported as working. If not, the service is

marked as down and the cloud application is in need of

a repair.

 terminatepgm is the terminate program. It is run when a

service is shutdown. It is there to nicely cleanup

resources associated with the service.

3.3 Boot Process
Here we describe how a single service is brought into

existence by cloudinit.d. A launch plan is given to the command

line program which describes a cloud application with

functionality arranged into the components describe above. The

first thing cloudinit.d does is validate that the launch plan has no

errors. Often times the acquisition of virtual machines is costly in

terms of time and money, thus we want to avoid the case where

the first 9 run levels pay the price only to discover that there was a

bug in the launch plan in level 10. Once the plan is validated all

IaaS requests for new virtual machines is made. We pre-stage this

request as an optimization. Starting a new VM can take a

significant amount of time and there are many tasks that we can

do in parallel.

Cloudinit.d then starts monitoring the services at run level 1

waiting for the IaaS system on which the VM was launched to

report an associated hostname. As soon as a hostname is present,

cloudinit.d repeatedly, but not aggressively, attempts to ssh into

the system. When a successful ssh connection is made the

bootpgm is copied to a distinct location via scp. Additionally, a

json[18] document which contains dependency information about

all previously created services is copied to host. The bootpgm

script is then run inside of that host with ssh. It can use the

information in the json document for discovering values about its

dependencies. As described above this script is responsible for

setting up the service for use in the cloud application. If it is

successful it must have an exit code of 0.

Along with the exit code, the bootpgm can return a json

document. This document contains a set of key/value pairs which

describe attributes of the newly configured service for

consumption by higher level services. Cloudinit.d uses this

document to furnish services at higher run levels with dynamic

information about this newly created service.

Once all of the services at a run level have completed

successfully, the process is then performed on the next run level

until all run levels have completed.

3.4 Repair
In any distributed system failures are inevitable. In complex

cloud applications diagnosing and repairing single failures can be

an arduous task. cloudinit.d detects system failures by running

the readypgm inside of the service’s host machine. The user can

manually decide when to check the status of their application with

the cloudinit.d command line program or the cloudinit.d python

API. If the readypgm returns a failure on a given service that

service can be automatically repaired.

The repair process works by first running the terminatepgm

(if it exists) and then shutting down the VM hosting the service.

The boot process described above is then run on that service

alone. In this reboot many of the dynamically determined

attributes of this service (eg: hostname) will likely change.

Because of this, once the reboot is complete, cloudinit.d will then

test all the services at a higher level. If any of those services fail

they too will be repaired in this way.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Conference’10, Month 1–2, 2010, City, State, Country.

Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00.

4. APPLICATION EXAMPLE
Figure 2 shows an example cloud application run on four of

the FutureGrid clouds using cloudinit.d. Here we have a highly

available web application which uses a Cassandra distributed data

base for highly available storage, apache HTTP servers for its web

application, and a load balancer to distribute the work. To avoid a

single point of failure and to ensure locality each node of both the

Cassandra data base and the web farm are placed in different

geographically distributed clouds. The load balancer is run on a

single static host with a known location.

Figure 2: Example application using cloudinit.d deployed on

FutureGrid Nimbus clouds

In this example each component is largely put in separate

clouds for explanatory purposes. Whether or not this is the best

architecture for all applications is outside of the scope of this

discussion. Here we are presenting a reasonable real world

example that helps illuminate important features of cloudinit.d.

4.1 Booting and Configuring a Single

Instance
The creator of this application would write a launch plan

with three run levels. The first has the four Cassandra nodes as

services configured to run in each of the four FutureGrid clouds.

The second is a set of replicated HTTP servers, configured

similarly. The final run level is the load balancer which is run on a

bare metal host that is assumed to be running prior to the boot of

this application. The plan is configured in such a way as to route

the important connection information from the Cassandra cluster,

to each HTTP server. And similarly the list of HTTP servers is

sent to the load balancer once run level 2 completes.

cloudinit.d takes a set of configuration files as input. Here

we will introduce the reader to some of the details of the launch

plan. This is not intended to be an exhaustive explanation of the

details and syntax of the launch plan, but rather it is intended to

provide the reader with a practical understanding of how it is

intended to work. There are two main file types in a launch plan;

a top level configuration file, and a run level configuration file.

The top level configuration file simply enumerates the run levels

and associates each run level with an additional configuration file.

Our example top level configuration file follows:
 [runlevels]

 level1: cassandra.conf

 level2: http.conf

 level3: loadbalance.conf

This tells cloudinit.d that there are three run levels and where

the description of those run levels can be found. Inside each of

those files is a description of each service.

Here we will just introduce the service section of the boot

level configuration file that describes the Cassandra service that

will be run on the FutureGrid sierra cloud.
 [svc-sierraCassandra]

 iaas_key: XXXXXX

 iaas_secret: XXXX

 iaas_hostname: sierra.futuregrid.org

 iaas_port: 8443

 iaas: Nimbus

 image: ubunut10.10

 ssh_username: ubuntu

 localsshkeypath: ~/.ssh/fg.pem

 readypgm: cass-test.py

 bootpgm: cass-boot.sh

The first five entries describe the cloud on which the service

will be created. User security tokens and the contact point of the

cloud are placed here. Cloudinit.d is also told what type of cloud

has been described, in this case it Nimbus but it could be other

common cloud types like EC2 [19] or Eucalyptus [20].

The line image: ubuntu10.10 is a directive saying to request

that the IaaS cloud launch the image with that name. In our

example the image is a base Ubuntu 10.10 image. ssh_username

and localsshkeypath give cloudinit.d the needed information for

establishing a communication link with the VM instance launched

from the ubuntu10.10 image.

Readypgm and bootpgm point to scripts that perform the

tasks associated with the respective directives (described in detail

above). In our case cass-boot.sh will be copied to the VM

instance with scp. The ssh session will be formed using the key at

localsshkeypath and the username ubuntu. cass-boot.sh will then

be run via ssh as the ubuntu user. It will download all of the

software needed for Cassandra to run and configure this node to

be a member of the four node cluster. When it is complete it will

return back to cloudinit.d the contact information of the newly

created Cassandra node. A similar entry is made in

cassandra.conf for the other clouds.

Once all four Cassandra services have been successfully

booted, cloudinit.d will open the configuration file http.conf. The

contents of this file will look very similar to that of

cassandra.conf, the main difference will be the bootpgm used to

configure the system. Again four new VMs will be started on

each of the 4 clouds. Cloudinit.d will again ssh into these

machines and stage in the configuration scripts. However instead

of setting up Cassandra, the bootgm will download, install, and

configure a web server. Further it will connect to the Cassandra

data store created in the previous boot level.

The final step in our example application is setting up the

load balancer. In this case the host machine will not be a virtual

machine. Instead it will be a static machine at a given hostname.

The process for configuring it works in almost an identical way,

only without the initial request to an IaaS framework to start a

VM. That first step is skipped and the process continues by

accessing the given hostname with scp and ssh. Because there are

no further run levels, once this run level successfully completes

details about each started service is reported to a log file and a

summary is reported to the console for immediate observation by

the operator.

5. RELATED WORK
CloudFormation [21] is a product created by Amazon Web

Services. Much like cloudinit.d it is used to create and operate

distributed applications in the cloud in a predictable and

repeatable way. Unlike cloudinit.d CloudFormation cannot be

used across many clouds. It is tool entirely dedicated for use with

AWS only. Because of this it can take advantage of many of their

services unavailable on other clouds (like SQS[22] and Elastic

Beanstalk[23]), however it cannot be used with the vast resources

available in science clouds. A further and important difference

between the two systems is that cloudinit.d is designed to boot

and contextualize an ordered hierarchy of VMs. CloudFormation

is designed specifically to make all of the AWS services work in

concert with each other, it does not do VM contextualization, and

it does not have an explicit notion of boot order.

6. SUMMARY
This paper introduces cloudinit.d, a tool for launching,

configuring, monitoring, and repairing a set of interdependent

virtual machines in an Infrastructure-as-a-Service (IaaS) cloud or

over a set of IaaS clouds. In addition, similar to its namesake, the

UNIX init.d program, cloudinit.d can launch specified groups of

VMs at different run levels representing dependencies of the

launched VMs: this facilitates dealing with interdependencies

with VM while optimizing the launch by allowing independent

VMs to launch at the same time.

Cloudinit.d provides a new addition to the cloud computing

ecosystem, making it easier for scientists to repeatedly launch,

manage, and reason about sets of VMs in deployed the cloud. The

capability to deploy launches repeatably is particularly important

in the construction of stable system and the ability to evaluate, at

any time, application-specific assertions significantly simplifies

VM launches in cloud environment.

7. ACKNOWLEDGMENTS
This material is based on work supported in part by the

National Science Foundation under Grant No. 0910812 to Indiana

University for "FutureGrid: An Experimental, High-Performance

Grid Test-bed." Partners in the FutureGrid project include U.

Chicago, U. Florida, San Diego Supercomputer Center - UC San

Diego, U. Southern California, U. Texas at Austin, U. Tennessee

at Knoxville, U. of Virginia, Purdue I., and T-U. Dresden. This

work also was supported in part by the Office of Science, U.S.

Department of Energy, under Contract DE-AC02-06CH11357.

The OOI Cyberinfrastructure program is funded through the JOI

Subaward, JSA 7-11, which is in turn funded by the NSF contract

OCE-0418967 with the Consortium for Ocean Leadership, Inc.

8. REFERENCES
1. Armbrust, M., et al., Above the Clouds: A Berkeley View of

Cloud Computing. 2009, University of California at Berkeley.

2. Keahey, K., T. Freeman, J. Lauret, and D. Olson. Virtual

Workspaces for Scientific Applications. in SciDAC Conference.

2007. Boston, MA.

3. Beckman, P., S. Nadella, N. Trebon, and I. Beschastnikh,

SPRUCE: A System for Supporting Urgent High-Performance

Computing. IFIP International Federation for Information

Process, Grid-Based Problems Solving Environments, 2007(239):

p. 295-311.

4. deltacloud: http://incubator.apache.org/deltacloud/.

5. libcloud: a unified interface to the cloud:

http://incubator.apache.org/libcloud/.

6. Keahey, K. and T. Freeman. Contextualization: Providing One-

click Virtual Clusters. in eScience. 2008. Indianapolis, IN.

7. Marshall, P., K. Keahey, and T. Freeman, Elastic Site: Using

Clouds to Elastically Extend Site Resources. CCGrid 2010, 2010.

8. Meisinger, M., C. Farcas, E. Farcas, C. Alexander, M. Arrott, J.

de La Beaujardiere, P. Hubbard, R. Mendelssohn, and R. Signell.

Serving Ocean Model Data on the Cloud. in Oceans 09. 2009.

9. Amazon Web Services (AWS): http://aws.amazon.com/.

10. Jackson, K., L. Ramakrishnan, K. Muriki, S. Canon, S.

Cholia, J. Shalf, H. Wasserman, and N. Wright. Performance

Analysis of High Performance Computing Applications on the

Amazon Web Services Cloud Amazon Web Services Cloud. in

CloudCom. 2010.

11. Open Cloud Computing Interface (OCCI): http://occi-wg.org/.

12. Cassandra: http://cassandra.apache.org/.

13. RabbitMQ: http://www.rabbitmq.com/.

14. FutureGrid: https://portal.futuregrid.org/

15. Debian HowTo: http://www.debian.org/doc/manuals/apt-

howto/

16. Fedora Project: http://fedoraproject.org/wiki/Tools/yum

17. OpsCode: http://wiki.opscode.com/display/chef/Chef+Solo

18. JSON: http://www.json.org/

19. EC2: http://aws.amazon.com/ec2/

20. Eucalyptus: http://www.eucalyptus.com/

21. CloudFormation: http://aws.amazon.com/cloudformation/

22. SQS: http://aws.amazon.com/sqs/

23. Elastic Beanstalk: http://aws.amazon.com/elasticbeanstalk/

http://www.rabbitmq.com/
https://portal.futuregrid.org/
http://www.debian.org/doc/manuals/apt-howto/
http://www.debian.org/doc/manuals/apt-howto/
http://fedoraproject.org/wiki/Tools/yum
http://wiki.opscode.com/display/chef/Chef+Solo
http://www.json.org/
http://aws.amazon.com/ec2/
http://www.eucalyptus.com/
http://aws.amazon.com/cloudformation/

